
RNAProfile 2.0

User Manual

Giulio Pavesi

April 3, 2004

Compiling the Program

RNAProfile comes as a .tar.gz package. It is written in C++, and has been
successfully compiled with gcc under different Unix/Linux/Cygwin platforms.
To extract the files:

$ gunzip rnaprofile.tar.gz

$ tar xvf rnaprofile.tar

A directory named ”RNAProfile2.0” should appear. It should contain a
directory named ”src” and another one named ”examples”. To compile the pro-
gram:

$ cd RNAProfile2.0

$ cd src

$ make

An executable file named ”rnaprofile” has been placed in the parent direc-
tory (RNAProfile1.1). In case gcc is not available on your computer, edit the
Makefile file and replace it with your C++ compiler.

$ cd ..

to go back one level. The executable should be there.

Running the Program

To run the program:

$./rnaprofile -f <filename>

1

if you are looking for hairpin motifs, that’s basically it. The input file should
contain the input sequences, in FASTA format if the sequences have not been
pre-processed, or in one of the supported preprocessed formats (see later on).
There’s a number of additional flags/parameters, with supposedly optimal de-
fault settings determined in our experiments, that can anyway be modified. The
default settings have been defined mostly to speed up the execution of the pro-
gram, with good results.

-A <int>: run the program in ”all versus all” mode. This is explained in
the paper in the ”finding motifs shared by a few sequences” section. At each
iteration, all regions are compared against all the other regions from different
sequences (instead of processing just one sequence at each iteration). The algo-
rithm stops when profiles containing <int> regions have been generated. The
best profiles of each iteration with up to <int> regions are anyway output. All
the other parameters (except the ones that work on the random sequence order
that no longer make sense) have the same effect also in this case.

-H <int>: this is used to define the secondary structure template. The tem-
plate is defined according to the number of hairpins the secondary structure
associated with the candidate regions should contain. Default is 1 (the default
is a single hairpin). Look also at -l, -L, and -e parameters.

-v : verbose mode. It outputs additional information while running, like the
number of candidate regions for each input sequence.

-r yes : turn on the random picking order of the sequences (default: pro-
cess the sequences in the order they appear in in the input file)

-r <seed> : use <seed> (integer number) as seed for the random picking
order of the sequences. Runs with the same seed have identical output.

-P <int> : number of profiles kept at each step/output by the program.
Default is 100.

-l <int> : minimum length of the regions to be considered. Default is 20 for
single hairpin motifs, 30 for two hairpin motifs, 40 for three, and so on. These
numbers work well with single or two hairpins. To save time, it should be in-
creased in case of more complex structures (involving larger regions). It should
be reduced when looking for small hairpins (whose region is shorter than 30 nts).

-L <int> : maximum length of the regions to be considered. Default is 40
for one hairpin, 60 for two, and so on.

-o <filename> : just process the sequences and save the candidate regions
in a file. When this option is used, the program stops after the first phase (gen-
eration of candidates according to the parameters set).

2

-s <int> : do not compare regions or profiles whose size difference is larger
than <int>. Used to speed up the program, avoiding aligmnents very unlikely
to produce good results. Default is 10.

-i <int> : run the program consecutively for <int> times. A different ran-
dom seed should be used for each run, so to get different results at each run
(use the ’-r yes’ parameter in combination with this one!).

-e <float> : consider only candidate regions fitting the structural template
whose structure has an energy lower than <float>. Default is -1 for single hair-
pins, -10 for two hairpins, and so on. Makes sense if the <float> specified is
lower than zero.

-p <int>: at each step, no more than <int> of the best profiles saved can be
generated by the same starting profile. Default is 10. Used to avoid premature
convergence.

-params <filename> : read the aligment parameters from a file, instead of
using the ones described in the paper. The file should have this format:

Mll Mlu Muu mll mlu muu Gl Gu

2 -15 .5 -1 -15 -.5 -2 -2

Two lines, and elements on each line are separated by a TAB character. Mll is
the score for the match between two unpaired nucleotides (same letter lowercase-
lowercase). Mlu match between paired and unpaired (same letter in lowercase-
uppercase). mll is the mismatch between two lowercase. muu is the mismatch
between two uppercase. mlu is the mismatch between an uppercase and a
lowercase. Gl is the gap penalty for aligning a gap with a lowercase letter.
Gu is the gap penalty for aligning a gap with an uppercase letter. A sample
parameters file is provided in the examples directory (just edit it if you want to
change parameters).

Working on Pre–processed Sequences

There’s also the possibility of running the program on a pre–processed dataset,
instead of using the standard region selection method provided with the algo-
rithm. In this case, the input file should contain:

• The input sequences, in FASTA format

• The candidate regions with their secondary structure in bracket notation

The sequences are separated from their respective regions. The regions of
sequence seqname should come after a line with exactly the same FASTA header
of seqname where the > symbol in the header is replaced by ! (exclamation
mark). For example:

3

> Sequence 1

CAGTCAGTACGTCTGACAGTCAGTACATGCTCGATGGTACGTATGCATGCGTGT

CATCAGTCTGAGTCAGTACTGACGTAGTCAGTCTGACTGACGTATGCAGTCTGA

! Sequence 1

GTTCGTCCTCAGTGCAGGGCAAC

(((.(((((......))))))))

AACTTCAGCTACAGTGTTAGCTAAGTT

(((((.(((((......))))))))))

CCACAGGCTCAGTGTGGTCTTGG

(((.(((((......))))))))

GCCTTCTGCACCAGTGTGTGTAAAGGC

(((((.(((((......))))))))))

GCCTTCTGCGCCAGTGTGTGTAAAGGC

(((((.(((((......))))))))))

TAATTGCAAACGCAGTGCCGTTTCAATTG

((((((.(((((......)))))))))))

> Sequence 2

CTACTGACAGTCAGTCATGCGTACAGTGTCAGTCATGCAGTCAGTACCGTACGTA

CATGACGTCATGCATGCATGCAGTCAGTCATGCAGTCATGCATGCATGCAGTCAG

! Sequence 2

CCACAGGCTCAGTGTGGTCTTGG

(((.(((((......))))))))

GCCTTCTGCACCAGTGTGTGTAAAGGC

(((((.(((((......))))))))))

GCCTTCTGCGCCAGTGTGTGTAAAGGC

(((((.(((((......))))))))))

TAATTGCAAACGCAGTGCCGTTTCAATTG

((((((.(((((......)))))))))))

and so on. IMPORTANT: the sequences are used only to compute the
background frequency of nucleotides for the scoring of profiles. The regions
of a sequence are not checked against the sequence itself. Thus, you can put
basically anything instead of the sequences. If you just put ACGT, the program
will assume that the regions come from a sequence with uniform nucleotide
composition, even if a single region is longer than the sequence itself (perhaps
this is useful if the regions are taken, say, from a whole genome. You do not need
to put the whole genome in the input file). The order in which the sequences
and regions appear in the file is not important. For example, you can put all the
sequences at the beginning, and the regions after them. Or, the regions before
the sequences. It does not matter. If an orphan sequence is found (thus, without
the list of regions), the algorithm assumes that it has to be processed with its
method (so you can use a combination of processed/unprocessed sequences in
the input). Instead, if a list of regions is found without a reference sequence, an
error message is displayed.

There are some additional parameters you can use in this case:

4

-e <float>: as in the previous case, the algorithm computes the free energy
of the structures associated with the regions, and discards those whose energy
is higher than float. IMPORTANT: only the energy of the structure is checked,
NOT its optimality.

-O: with this flag, ONLY the regions whose structure is optimal are kept.
That is, the program folds each of the regions by itself, and compares the struc-
ture found in the file with the one it obtained. Only those regions whose two
structures match are kept and passed to the program. The others are discarded.

Alternatively, the program can start from one or more existing profiles. The
input format for a profile is:

#5.7844 7

a 0.0 0.0 0.0 0.0 0.0 0.0 ...

c 0.0 0.0 0.0 0.0 0.0 0.0 ...

g 0.0 0.0 0.0 0.0 0.0 0.0 ...

t 0.0 0.0 0.0 0.0 0.0 0.0 ...

A 0.0 0.0 0.9 1.0 0.0 0.0 ...

C 0.0 0.0 0.0 0.0 0.1 0.0 ...

G 1.0 0.9 0.1 0.0 0.9 1.0 ...

T 0.0 0.1 0.0 0.0 0.0 0.0 ...

- 0.0 0.0 0.0 0.0 0.0 0.0 ...

The numbers after the # symbol are the score of the profile (see the paper)
and the number of regions that were used to build it. This is exactly how profiles
are output by the program, so you can recycle them by cutting and pasting to
process new data. An input file can thus contain one or more profiles, and
sequences, either pre–processed or not. The algorithm, instead of starting from
the pairwise alignment of two sequences, will start from the profiles found in
the file. All the parameters work as usual.

The Output

When running, the program outputs on the screen some stuff concerning the run,
like which sequence is being processed, how many sequences it has to process
before the end, the best score found so far, and so on. The real results are
saved into a file, whose name is output on the screen at the end of the run. The
output file looks like:

ALIGNMENT RESULTS

Input file: mouse+human.ferritin.fna

Number of profiles saved at each step: 100

Max number of profiles originating from the same profile (or region): 10

Region minimum length: 20

Region maximum length: 40

5

Energy threshold: 0

Max difference in length between regions: 10

Random alignment: yes (Seed used: 1065538283)

Best profiles:

Profile 1. Score: 2.66

(profile data here)

>gi|33859501|ref|NM_009653.1| Mus musculus aminolevulinic acid synthase 2, mRNA

gGTTcGTCCTcagtgcAGGGCAACa

.(((.(((((......)))))))). (E: -7.2 Fitness: 4.6)

>gi|6753913|ref|NM_010240.1| Mus musculus ferritin light chain 1 (Ftl1), mRNA

cTTGcTTCAAcagtgtTTGAACGGa

.(((.(((((......)))))))). (E: -1.8 Fitness: 9.0)

>gi|6753911|ref|NM_010239.1| Mus musculus ferritin heavy chain (Fth), mRNA

cCTGcTTCAAcagtgcTTGAACGGa

.(((.(((((......)))))))). (E: -4.4 Fitness: 8.1)

>gi|20149497|ref|NM_000146.2| Homo sapiens ferritin, light polypeptide (FTL), mRNA

cTTGcTTCAAcagtgtTTGGACGGa

.(((.(((((......)))))))). (E: -1.3 Fitness: 9.8)

>gi|4557298|ref|NM_000032.1| Homo sapiens aminolevulinate, delta-, synthase 2

cGTTcGTCCTcagtgcAGGGCAACa

.(((.(((((......)))))))). (E: -7.5 Fitness: 6.3)

>gi|507251|gb|L20941.1|HUMFERRITH Human ferritin heavy chain mRNA, complete cds

cCTGcTTCAAcagtgcTTGGACGGa

.(((.(((((......)))))))). (E: -3.9 Fitness: 8.8)

>gi|806340:c862-1 H.sapiens (24) Ferritin H pseudogene

aATTTCTTTatttGAAGGAATg

.((((((((....)))))))). (E: -4.5 Fitness: -3.6)

>gi|182512|gb|J04755.1|HUMFERHX Human ferritin H processed pseudogene, complete cds

ctTAGTCATTgccatGATGACTGca

..((((((((.....)))))))).. (E: -7.5 Fitness: -39.7)

>gi|806342|emb|X80336.1|HS5FERHPE H.sapiens (5) Ferritin H pseudogene

TTCTTCaCCaaTCtcatGAGGaGAGGGA

((((((.((..((....)))).)))))) (E: -5.8 Fitness: -321.6)

At the beginning, there are the input parameters. Then, the list of the high-
est scoring profiles, with the score, and the list of regions that have been used
to build each profile, as well as the corresponding folding energy (E). Below
each region, you can also see where the algorithm put gaps when building the
alignment. 9 Sequences used means that the algorithm has found 9 sequences
(preprocessed or not) in the input file. Unknown: 0 means that the algorithm
started from scratch instead of from existing profiles (built using a number of
unknown sequences) in the input file. Each instance comes after the name of

6

the sequence it was taken from. It shows the region and its secondary structure.
Next to each instance, the (E:) value gives the energy associated with the struc-
ture, followed by the fitness value of the instance (see the paper for details on
how the fitness is computed). The rationale is: positive or zero point something
(also minus zero point something) fitness value means that the region is surely
an instance of the motif described by the profile. Negative values are instead
suspicious. The more negative, the more unlikely to be a real instance of the
motif.

Contact

For comments, praise, bug reports (especially, please!), donations, contact me
(Giulio Pavesi) at pavesi@disco.unimib.it.

7

